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ABSTRACT

II-V semiconductors grown on silicon substrates are
very attractive for lower-cost, high-efficiency multijunction
solar cells, but lattice-mismatched alloys that result in high
dislocation densities have been unable to achieve satisfac-
tory performance. GaN.P.«yAs, is a direct-gap III-V alloy
that can be grown lattice-matched to Si when y = 4.7x -
0.1. We have proposed the use of lattice-matched GaNPAs
on silicon for high-efficiency multijunction solar cells. We
have grown GaNPi..yAs, on GaP (with a similar lattice
constant to silicon) by metal-organic chemical vapor phase
epitaxy with direct bandgaps in the range of 1.5 to 2.0 eV.
We have demonstrated the performance of single-junction
GaNiPiyAsy solar cells grown on GaP substrates and
shown improvements in material quality by reducing carbon
and hydrogen impurities through optimization of growth
conditions. We have achieved quantum efficiencies (QE) in
these cells as high as 60% and PL lifetimes as high as 3.0
ns.

1. Introduction

State-of-the-art GalnP/GaAs/Ge and many proposed fu-
ture generations of III-V high-efficiency solar cells are based
on GaAs or Ge substrates [2]. In particular, much attention
has been given to GalnNAs materials grown lattice-matched
on GaAs over the past few years [3]. More recently, GaNP
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materials have been shown to become direct gap, with only
a few percent N [4]. GaNPAs alloys have been grown lat-
tice-matched to Si [5] with band gaps that could be useful
for solar cells. Growth on silicon substrates is very exciting
because it would allow for significant cost savings of sub-
strates and the potential for integration with existing Si
technology. Lattice-mismatched III-V cells on Si substrates
have been studied extensively, but the reduction of defect
densities remains a significant challenge that typically re-
quires complex graded buffer layers. We have proposed a
structure based on lattice-

matched GaNP,_ ,As,,
hereafter GaNPAs, alloys

1.7 eV GaNPAs junction
grown on silicon [6,7].

tunnel junction

The solar cell structure

shown in Fig. 1, com-
posed of a lattice-
matched III-V cell grown

1.1 eV Silicon junction
(silicon substr ate)

on a Si cell, could poten-
tially rival the efficien-
cies of high-efficiency
cells on GaAs or Ge,
with significant cost savings and improvements in mechani-
cal stability. Indeed, a two-junction cell composed of a
1.65-eV to 1.75-eV GaNPAs junction on a 1.1-eV silicon
junction has a nearly optimal set of band gaps for high-
efficiency solar cells, as shown in Fig. 2.

Fig. 1. Proposed lattice-
matched GaNPAs on silicon
tandem solar cell.
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Fig. 2. Iso-efficiency contour plots of ideal series-connected, two-junction solar cell with an optimized top cell
thickness [1], as a function of top-cell and bottom-cell direct band gap using standard spectra: (a) AMO (space), (b)
AML.5 global (terrestrial), (c) AM1.5 direct (concentrator terrestrial). All efficiencies were calculated at 300 K and
1—sun conditions. The red triangles show optimal GaNPAs/Si tandems, and the blue circles show the standard

GalnP/GaAs tandem cell.



GaP is only 0.36% lattice-mismatched with silicon,
and growth on GaP substrates avoids some of the difficul-
ties associated with growth on silicon. Therefore, as a first
step, we have studied GaNPAs solar cells grown on GaP
substrates.

2. Material Properties

GaNPAs layers were grown by atmospheric-pressure
metal-organic vapor-phase epitaxy (MOVPE) on (001)-
oriented, double-side-polished GaP wafers using trimethyl-
gallium (TMG) or triethylgallium (TEG), unsymmetric-
dimethylhydrazine (DMH), phosphine (PH;), and t-
butylarsine as sources. Growth was performed at
600°—700°C, with nominal growth rates (GR) of 2—4 um/h,
and PH;/Ga ratios of 6-52. Incorporation efficiencies of the
group-V elements follow the trend of As>P>N and are
highly temperature dependent. Whereas N incorporation
drops off with increasing temperature, P incorporation in-
creases relative to As. Thus, achieving the intended compo-
sitions required a sensitive balance between group-V source
flows and temperature. By carefully adjusting the group-V
flows, alloys nearly lattice-matched to GaP were grown.

A series of GaNPAs layers were grown directly on dou-
ble-side-polished, undoped GaP substrates to determine the
absorption coefficient (o). Simultaneous reflectance (R) and
transmittance (T) measurements of the layer were used to
determine o(A) below the band gap energy of the GaP sub-
strate, and spectral ellipsometry (SE) measurements were
used above the band gap of the substrate. Fig. 3 shows the
absorption for several different compositions of GaNPAs.
The strong direct-like absorption in this spectral range indi-
cates that these alloys may be quite useful as solar cell ab-
sorber layers. The absorption edge indicated band gaps in
the range of 1.5 to 2.0 eV for different compositions lattice-
matched to GaP.

Double-crystal x-ray diffraction (DCXRD) was per-
formed in the (004) reflection and, in some cases, (115)
reflections. Nitrogen composition in GaNP was estimated
using Vegard's law. Fig. 4 shows how closely the GaNPAs
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Fig. 3. Absorption coefficient of GaN.P.,As, layers
grown on GaP substrates. The GaP substrate is shown as
circles.
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Fig. 4. Band gap vs. lattice constant of II1I-V semicon-
ductors including data for GaNPAs alloys from Fig. 3.

layers were lattice-matched to GaP and Si.

We have also studied the incorporation of carbon and
hydrogen impurities into GaNP grown by MOCVD and
have shown how growth temperature, growth rate, gallium
source, and group V fluxes strongly influence the incorpora-
tion of these impurities [8]. Impurity concentrations of car-
bon in similar compositions of GaNP can vary from the
secondary-ion mass spectrometry (SIMS) detection limit
(about 1x10"" c¢m™) to about 1x10” cm™, depending on
growth conditions. The behavior of carbon incorporation
depends strongly on whether the dominant carbon source is
the gallium source or the nitrogen source. When DMH
dominates as the carbon source, similar carbon concentra-
tions result using either TEG or TMG. These conditions
result when high flow rates of DMH are used to achieve
sufficient nitrogen incorporation at higher temperatures
(>700°C). When the gallium source dominates as the carbon
source, similar carbon concentrations result, whether grow-
ing GaP without DMH or GaNP with DMH; but much
greater carbon incorporation occurs using TMG rather than
TEG. The carbon incorporation when the gallium source
dominates drops dramatically with increasing growth tem-
perature. To minimize the carbon incorporation in a given
composition of GaNP, an optimal growth temperature exists
(650°=700°C for GaNy,P.s), that balances the two mecha-
nisms of carbon incorporation. The effects of the group-V
fluxes on the carbon incorporation also depend on which
mechanism of carbon incorporation dominates.

The hydrogen and carbon incorporation in GaNP are
strongly correlated even when it is intentionally doped with
carbon only (see Fig. 5). Measurements of the photolumi-
nescence (PL) decay lifetime [8] show that the electrical
quality of the material is also correlated with the carbon and
hydrogen concentration, implying that carbon and/or hydro-
gen form a deep-level complex that is detrimental to the
electrical quality of GaNP. Fig. 5 shows the codependence
of PL lifetime, hydrogen, and carbon concentration. Life-
times as long as 3 ns were achieved in the samples with the
lowest concentrations of carbon and hydrogen. It should be
noted that these lifetimes were achieved for samples with no
surface passivation and large lattice-mismatch. Understand-
ing the effects of growth conditions on impurity concen-
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Fig. 5. PL decay lifetime of GaNy¢,Poos (indicated by
color) as a function of carbon and hydrogen concentra-
tion (determined by SIMS).

trations in GaNP is thus essential to improving device
properties of GaNPAs solar cells.

3. Solar Cells

We have studied GaNPAs solar cells with direct band-
gaps ranging from 1.6-1.9 eV [7]. We have grown and
measured cells using the simple single heterojunction cell
design shown in Fig. 6. The cells consisted of a Zn-doped
GaP back surface field, an undoped GaNPAs base, a Si-
doped GaP emitter, and a Se-doped GaAs contact layer. The
cells were grown on Zn-doped (001) GaP substrates. The
active GaNPAs base was grown at 650°C with TEG for
minimal carbon and hydrogen incorporation. Au/Zn/Au
back-side contacts and Au/Sn/Au front-side contacts were
deposited and annealed at 450°C. Devices were isolated
with a KMnO./HF/H,O mesa etch. The GaAs contact layer
was selectively etched with a solution of NH4OH/H,0,/H,0.

The external QE and reflectance of the cells were meas-

ured to calculate the in-
ternal QE. The internal
QE is shown in Fig. 7a
for three solar cells
grown at different growth
rates. The integrated cur-
rent was calculated from
the AM1.5 global spec-
trum and used to set the
light level on an XT-10
solar simulator. The cur-
rent-voltage (IV) curves
were measured both in
the light and dark. The
IV curves corresponding
to the cells from Fig. 7a
are shown in Fig. 7b.

The carrier concentra-
tion in the nominally undoped GaNPAs base and similar
layers was measured by capacitance-voltage (CV) measure-
ments. The layers were found to be p-type (on the order of
1x10'® em™) under white light bias, but were depleted when
measured in the dark (see Fig. 7c).

The impurity carbon and hydrogen concentrations of
GaNPAs material grown under the same conditions as these
cells were measured by SIMS. These results are summarized
in the legend of Fig. 7a. These impurity levels changed
significantly by changing only the growth rate. In all cases,
the carbon concentration was greater than the carrier concen-
tration measured by CV in the light. This indicates that
carbon is not acting only as a shallow dopant. The QE and
Js., on the other hand, correlate strongly with the carbon and
hydrogen concentrations. This is further evidence that car-
bon and/or hydrogen form a deep-level complex that is det-
rimental to the diffusion length.

Another interesting effect in these GaNPAs cells can be
observed in the dark IV curves of Fig. 7b. The dark IV
curve of the cell grown at 4 um/h has a much higher turn-on
voltage than its corresponding light IV curve. This effect is
typical of the GaNPAs cells discussed previously [7]. It

Au/Sn/Au contact
N+ GaAs (Se-doped)

100 nm GaP emitter (Si or Se)

0.8 um GaNPAs base (undoped)

500 nm GaP BSF (Zn-doped)

GaP substrate (Zn-doped)

Au/Zn/Au back contact
Fig. 6. Single-junction
GaNPAs cell structure.
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Fig. 7. (a) Internal quantum efficiency, (b) current-voltage curves, and (c) carrier concentration profiles from CV of three
GaNPAs solar cells nearly lattice-matched to GaP grown at different growth rates. Carbon and hydrogen concentrations de-
termined by SIMS are shown in the legend. The GaNPAs layers were all grown at 650°C with identical N, P, and As

source flow rates.



may be a result of the different carrier properties in the light
and dark, or an unintentional pn junction within the cell
structure. By reducing the carbon and hydrogen impurity
concentrations (by reducing the growth rate in this case), we
have managed to reduce or eliminate this effect. In addition,
the fill factor is greatly improved by reducing the impurity
concentrations.

A comparison of GaNPAs cells with GalnP cells that
have a comparable bandgap shows that there is considerable
room for improvement of the GaNPAs cells [7]. The reduc-
tion of carbon and hydrogen impurity concentrations by
better understanding the effects of growth conditions has
allowed us to significantly improve the properties of GaN-
PAs solar cells, but further improvements in the electrical
properties of GaNPAs are necessary to realize the high-
efficiency tandem solar cell on silicon considered here. Fu-
ture work will also focus on the growth of lattice-matched
GaNPAs on silicon substrates. The growth of lattice-
matched GaNPAs on silicon is challenging due to the polar-
ity and thermal expansion mismatch between III-V and sili-
con. Fortunately, these problems seem to have been solved
to some extent [5].

4. Conclusion

Lattice-matched GaNPAs solar cells on GaP substrates
have been demonstrated with absorption characteristics ap-
propriate for the top cell of an optimal lattice-matched II-V
on silicon tandem solar cell. The performance of these cells
was less than ideal, suggesting problems with the electrical
quality of this novel material. Improvements in solar cell
performance and PL lifetimes have been achieved by reduc-
ing carbon and hydrogen impurity concentrations through
optimization of growth conditions. We have achieved QE in
these cells as high as 60% and PL lifetimes as high as 3.0
ns.
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